A user-friendly guide on how to write a good academic article
Dr. Irmina Fortunato

Editorial Coordinator, Open Access
Life Sciences & Medicine
De Gruyter

irmina.fortunato@degruyter.com
PUBLISHING YOUR PAPER...

- Complete
- Sound
- Logical
- Consistent

... sharing your results and knowledge with the scientific community
WHAT'S YOUR STORY?

01 Why did you research the topic?
02 What is the background?
03 What was the aim of the study?
04 What is the innovation in your article?
05 How do you want to present your results?
WHAT IS YOUR AUDIENCE?

FIND THE RIGHT JOURNAL

- Aim and Scope
- Publication model
- Indexing and Abstracting
- Impact
Average citations per publication

Average number of citations received in calendar year by all items published in that journal in the proceeding 3 years

Average prestige by publication, depending on the SJR of the citing journal

Citations relative to average per discipline; SNIP>1 means journal is cited more than average for field

Alternative metrics of citations count

IF

SJR

SNIP

Altmetrics

Cite Score
INDEXING

- Web of Science
- Scopus
- PubMed
- DOAJ
- Chemical Abstracts Service (CAS)
- MathSciNet
- ERIH PLUS
PUBLISHING MODELS

OPEN ACCESS
Free and permanent access to published research

HYBRID
Articles available only to subscribers
Articles published in Open Access on authors’ request

SUBSCRIPTION BASED
Requires institutional’s subscription or individual purchase
OPEN ACCESS AT DE GRUYTER

- Continuous, immediate publication
- Flexible APC policy
- Promotion of published articles
- CC BY license
- Secure archiving by Portico
- Language editing
- Journal cascading
INSTRUCTION FOR AUTHORS
HOW TO WRITE A GOOD ARTICLE

KEY ELEMENTS

Title – Author(s)
Abstract
Keywords
Introduction
Materials and Methods
Results
Discussion
Conclusions
References and Citations
Supplementary Information

DE GRUYTER

The First Decade (1964-1972)
Research Article

C. Bram Cadby*, Xiaolan Yang, Heike Y. Schenk-Mathes
What Is So Different About Neuroenhancement?

A comparative study

https://doi.org/10.1515/dep-2017-0059
received February 12, 2017, accepted March 25, 2017; published online July 12, 2017

Abstract: In the context of the aesthetic formation of knowledge and its as-possible and success-oriented application, insights and profits without the reference to the arguments developed around 1900. The main investigation also includes the period between the entry into force and the presentation in its current version. Their function as part of the literary portrayal and narrative technique.

Keywords: Function, transmission, investigation, principal, period

Communicated by Eric Editor

1 Studies and Investigations

The main investigation also includes the period between the entry into force and the presentation in its current version. Their function as part of the literary portrayal and narrative technique.\(^1\)

DE GRUYTER

References


- Advertise your article
- Make the title catchy
- Keep it specific
- Identify article’s main issue
- Focus on common terms that are relevant to your topic
- The average length of 10 words
- Mind the language
- Avoid jargon and word play
- Follow Instruction for authors
Avoid Ghost Authors
Gift Authors
KEYWORDS

- Used by abstracting and indexing services
- Attract the readers
- Help to find reviewers
- Use only established abbreviations (e.g. DNA)
ABSTRACT

- Should fully represent the key points of your work
- Summary of each section of your article
- Shouldn’t include any extra information that are not included in the article

Up to 200 words

Shouldn’t include references, figures or tables
INTRODUCTION

- Provide a background
- State the problem
- Describe existing solutions and findings of others
- Describe the main limitations
- Present your hypotheses - What do you hope to achieve?
- Avoid introduction being too long or a boring history lesson
2 Materials and Methods:

2.1 Cell culture
PC3 cells (which were purchased from China Center for Type Culture Collection, Wuhan, China) were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS), streptomycin (100mg/ml) and penicillin (100 U/ml), in 5% CO2, at 37°C.

2.2 Immunohistochemical staining
Twenty PCa tissue cases were chosen for the experimental group, and 20 benign prostatic hyperplasia (BPH) tissue cases were used as a control group. Approval was obtained from all patients as well as from the ethics committee of the hospital prior to tissue collection for this experiment. The immunohistochemical staining process was as follows: tissue samples were fixed, paraffin-embedded and sectioned into 5 μm slices. The sections were dehydrated, dewaxed and then treated with hydrogen peroxide to block endogenous peroxidase activity. Antigen retrieval was performed by microwaving the sections, which were then blocked with 10% goat serum. Next, the sections were incubated overnight with anti-GRP78 and anti-GRP96 antibodies (Proteintech, USA). The sections were washed and then incubated with a secondary antibody from the ready-to-use SABC Staining Kit (Boster, China).

2.4 Cell transfection
The reverse transfections were performed using the INTERFERin in vitro siRNA transfection reagent (Polyplus, France) according to manufacturer's instructions. Specifically, siRNAs were diluted in 200 μl of OptiMEM medium (Gibco, USA), combined with 12 μl of INTERFERin transfection reagent and incubated for 10 minutes at room temperature. Following incubation, the siRNA-INTERFERin transfection reagent mixture was transferred to a six-well plate containing 1.95 ml of FBS-free DMEM per well. PC3 cells were incubated with the transfection mixture and cultured in a 37°C incubator for 8 hours. Following this, 245 μl of FBS was added to each well, and the cells were returned to the incubator for further culturing. The final siRNA concentration in the NC, siGRP78 and siGRP96 groups was 50 nM. In the siGRP78+94 group, the final concentration was 50 nM siGRP78+50 nM siGRP96. No siRNA was added to the blank group.

2.5 Western blot analysis
48 hours after transfection, cells were harvested, lysed and centrifuged at 12,000g for 15 minutes to collect protein lysates. Protein concentrations were quantified, and equal amounts of protein were then separated by electrophoresis on a 12% SDS-PAGE gel and transferred to a PVDF membrane. The PVDF membranes were blocked with blocking solution and then incubated with a primary
The essence of your study...

RESULTS

- Report your results
- Add tables, figures, graphs
- Divide Results into sections
- Emphasize any significant findings
- Communicate which results were statistically significant
DISCUSSION

- Did the results confirmed your hypothesis?
- Compare your results with already published research
- Describe an innovation and added value of your results to the scientific knowledge
- Describe limitations of your study
- Suggest further research in the topic
CONCLUSIONS

01 SUM IT UP!
Summary of the most important findings

02 PROVED
Conclusions must be supported by the results

03 APPLICATION
Suggest practical applications for your results

04 BRIEF
Not longer than one paragraph

05 FIND ITS PLACE
Separate section or last paragraph of discussion
ACKNOWLEDGEMENTS

Acknowledgements: The authors would like to express their deepest gratitude to Dr. Giulia Giunti for her valuable suggestions and her support during manuscript preparation. Analyses were carried out using instruments acquired with the support of PON SAF@MED (PON a3_00016) and PON PON03PE_00090_123 (PON Ricerca e competitività 2007–2013).

Mention people who helped with your research...

Give a credit to funding bodies...
Follow journal’s recommendation for the reference style

25-30 references are appropriate for a full text article
SUPPLEMENTARY MATERIAL

- Data not included in the manuscript
- Supplementary datasets
- Additional materials and methods information
- Charts and graphs describing any aspect of the study
- Genetic information in standard genetic nomenclature
- Chemical information, including chemical drawings
- Multimedia files like video or audio files
- Images used to obtain results from imaging systems
- Large data tables
- Source code
Manuscripts must be written in English language
Correct words relevant to the topic, proper grammar, English writing style
Before submission polish your article with help of a native speaker, preferably with a knowledge of your speciality
Language editing at De Gruyter Open Access
Polystyrene-supported GaCl₃ as a highly efficient and recyclable heterogeneous Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles

Ali Dehmoutmorte
Polymer Science and Technology Division, Research Institute of Petroleum Industry (RIP), IRAN. 14537-5375, Tehran, Iran

ABSTRACT
A new and environmentally friendly method for preparation of N-substituted pyrroles has been developed using polystyrene-supported gallium chloride (GaCl₃) as a highly active and reusable heterogeneous Lewis acid catalyst in presence of excess of the corresponding amine. This process has the advantages of easy availability, stability, reusability, and easy recovery of the catalyst, high efficiency, and simple experimental and workup procedure.

1. Introduction

Pyrroles are an important class of nitrogen-containing heterocyclic compounds that constitute the core unit in many natural products, synthetic polymers, and several block copolymers for polymeric synthesis. Polystyrene-supported gallium chloride (GaCl₃) is an effective heterogeneous Lewis acid catalyst for the one-pot synthesis of N-substituted pyrroles. These compounds can be prepared from the condensation reaction of aldehydes with primary amines in the presence of a Lewis acid catalyst. This method is based on the condensation of primary amines with aldehydes to form N-substituted pyrroles.

Polystyrene-supported gallium chloride (GaCl₃) is an effective heterogeneous Lewis acid catalyst for the one-pot synthesis of N-substituted pyrroles. These compounds can be prepared from the condensation reaction of aldehydes with primary amines in the presence of a Lewis acid catalyst. This method is based on the condensation of primary amines with aldehydes to form N-substituted pyrroles. However, despite the potential utility of these catalysts, many of them are not widely used due to the difficulty in recovering and reusing them.

The utilization of these methodologies for the synthesis of pyrroles is associated with several advantages, such as easy availability, stability, reusability, and easy recovery of the catalyst, high efficiency, and simple experimental and workup procedures. Therefore, the use of polystyrene-supported gallium chloride (GaCl₃) as a highly active and reusable heterogeneous Lewis acid catalyst in the one-pot synthesis of N-substituted pyrroles is desired.
COVER LETTER

Dear Dr. Last Name:

I would like to submit the manuscript entitled “your article’s name” by author names to be considered for publication as xxxxxxxx[[paper type: “an original article”, “a brief communication”, “a case report”]] in the Journal Name.

[Summarize the research problem/gap, your main research findings, and the implications of your findings]. We believe these findings will be of interest to the readers of your journal.

[Revise or delete any of the following standard statements used in cover letters]
We declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere.

We know of no conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. As Corresponding Author, I confirm that the manuscript has been read and approved for submission by all the named authors.

Explain why you consider your manuscript to be suitable for publication in the journal.

Explain the innovation of your research.
WHY TO PUBLISH WITH DE GRUYTER?

- Fast and comprehensive peer-review
- Individual approach to the author
- Wide range of journals published in different publishing models
- Promotion of published articles
SCOPE

Arts
Asian and Pacific Studies
Classical and Ancient Near Eastern Studies
Cultural Studies
History
Islamic Studies
Jewish Studies
Library and Information Science, Book Studies

Music
Law
Linguistics and Semiotics
Literary Studies
Modern Languages
Philosophy
Social Sciences
Theology and Religion

Chemistry
Computer Sciences
Engineering
Geosciences
Industrial Chemistry
Materials Sciences
Mathematics
Pharmacy
Physics

Architecture and Design
Business and Economics
Life Sciences
Agriculture
Astronomy
Sports and Recreation
Medicine
JOURNALS
THANK YOU

Dr. Irmina Fortunato
irmina.fortunato@degruyter.com